Courses
This page displays the schedule of ÷ÈÓ°Ö±²¥ courses in this department for this academic year. It also displays descriptions of courses offered by the department during the last four academic years.
For information about courses offered by other ÷ÈÓ°Ö±²¥ departments and programs or about courses offered by Haverford and Swarthmore Colleges, please consult the Course Guides page.
For information about the Academic Calendar, including the dates of first and second quarter courses, please visit the College's calendars page.
Students must choose a major subject and may choose a minor subject. Students may also select from one of seven concentrations, which are offered to enhance a student's work in the major or minor and to focus work on a specific area of interest.
Concentrations are an intentional cluster of courses already offered by various academic departments or through general programs. These courses may also be cross-listed in several academic departments. Therefore, when registering for a course that counts toward a concentration, a student should register for the course listed in her major or minor department. If the concentration course is not listed in her major or minor department, the student may enroll in any listing of that course.
Fall 2024 DSCI
Course | Title | Schedule/Units | Meeting Type Times/Days | Location | Instr(s) |
---|---|---|---|---|---|
BIOL B215-001 | Biostatistics with R | Semester / 1 | Lecture: 10:10 AM-11:30 AM TTH | Park 264 |
De Bona,S., De Bona,S. |
Laboratory: 1:10 PM-4:00 PM W | Park 10 |
||||
BIOL B250-001 | Computational Methods in the Sciences | Semester / 1 | Lecture: 11:40 AM-1:00 PM MW | Park 10 |
Weber,A., Weber,A. |
Laboratory: 1:10 PM-4:00 PM T | Park 10 |
||||
CITY B201-001 | Introduction to GIS for Social and Environmental Analysis | Semester / 1 | Lecture: 11:40 AM-1:00 PM TTH | Canaday Computer Lab |
Kinsey,D., Kinsey,D. |
TA Session: 5:30 PM-6:30 PM M | Canaday Computer Lab |
||||
CMSC B113-001 | Computer Science I | Semester / 1 | Lecture: 1:10 PM-2:30 PM TTH | Park 300 |
Department staff,T., Poliak,A. |
Laboratory: 2:40 PM-4:00 PM T | Park 230 |
||||
CMSC B151-001 | Introduction to Data Structures | Semester / 1 | Lecture: 1:10 PM-2:30 PM MW | Park 159 |
Dinella,E., Dinella,E. |
Laboratory: 2:40 PM-4:00 PM W | Park 230 |
||||
DSCI B100-001 | Introduction to Data Science | Semester / 1 | Lecture: 2:40 PM-4:00 PM TTH | Dalton Hall 300 |
Kuelz,A. |
DSCI B201-001 | Data Ethics: Surveillance and Manipulation | Semester / 1 | LEC: 1:10 PM-2:30 PM MW | Bettws Y Coed 239 |
Faller,A. |
DSCI B314-001 | Advanced Data Science:Regression & Multivariate Statistics | Semester / 1 | LEC: 8:40 AM-11:30 AM TH | Bettws Y Coed 239 |
Schulz,M. |
ECON B253-001 | Introduction to Econometrics | Semester / 1 | LEC: 2:40 PM-4:00 PM MW | Dalton Hall 300 |
Monge,D. |
GNST B425-001 | Praxis III - Independent Study | 1 | Dept. staff, TBA | ||
MATH B104-001 | Basic Probability and Statistics | Semester / 1 | Lecture: 2:10 PM-3:00 PM MWF | Park 300 |
Kasius,P. |
MATH B104-002 | Basic Probability and Statistics | Semester / 1 | Lecture: 3:10 PM-4:00 PM MWF | Park 300 |
Kasius,P. |
POLS B233-001 | Intro to Research Design and Data Analysis for PoliSci | Semester / 1 | Lecture: 10:10 AM-11:30 AM MW | Dalton Hall 2 |
Sasmaz,A. |
POLS B345-001 | Big Data, Big Impact, Big Responsibilities: Fundamentals and Ethics of Data Science | Semester / 1 | Lecture: 9:10 AM-12:00 PM F | Dalton Hall 212A |
Oh,S. |
PSYC B205-001 | Research Methods and Statistics | Semester / 1 | Lecture: 1:10 PM-2:30 PM MW | Taylor Hall G |
Albert,D. |
PSYC B205-00A | Research Methods and Statistics | Semester / 1 | Laboratory: 10:40 AM-12:00 PM F | Canaday Computer Lab |
Albert,D. |
PSYC B205-00B | Research Methods and Statistics | Semester / 1 | Laboratory: 1:10 PM-2:30 PM F | Canaday Computer Lab |
Albert,D. |
PSYC B205-00Z | Research Methods and Statistics | 1 | Albert,D. | ||
PSYC B265-001 | Computational Neuroscience | Semester / 1 | Lecture: 2:40 PM-4:00 PM TTH | Canaday Computer Lab |
Shin,Y. |
PSYC B318-001 | Data Science with R | Semester / 1 | Lecture: 7:10 PM-10:00 PM W | Canaday Computer Lab |
Sorhagen,N. |
SOCL B265-001 | Quantitative Methods | Semester / 1 | Lecture: 11:40 AM-1:00 PM MW | Dalton Hall 119 |
Wright,N. |
Spring 2025 DSCI
Course | Title | Schedule/Units | Meeting Type Times/Days | Location | Instr(s) |
---|---|---|---|---|---|
BIOL B330-001 | Ecological Modeling | Semester / 1 | Lecture: 1:10 PM-4:00 PM F | De Bona,S. | |
CITY B201-001 | Introduction to GIS for Social and Environmental Analysis | Semester / 1 | Lecture: 10:10 AM-11:30 AM MW | Canaday Computer Lab |
Kinsey,D. |
CITY B217-001 | Topics in Research Methods: Quantitative Methods | Semester / 1 | LEC: 2:40 PM-4:00 PM MW | Canaday Computer Lab |
Hurley,J. |
CITY B328-001 | Topics in Advanced GIS: Advanced GIS for Social and Environmental Analysis | Semester / 1 | LEC: 1:10 PM-3:30 PM W | Kinsey,D. | |
CMSC B113-001 | Computer Science I | Semester / 1 | Lecture: 1:10 PM-2:30 PM MW | Park 245 |
Kumar,D., Kumar,D. |
Laboratory: 2:40 PM-4:00 PM M | Park 231 |
||||
CMSC B151-001 | Introduction to Data Structures | Semester / 1 | Lecture: 1:10 PM-2:30 PM MW | Park 300 |
Dinella,E., Dinella,E. |
Laboratory: 2:40 PM-4:00 PM W | |||||
DSCI B100-001 | Introduction to Data Science | Semester / 1 | Lecture: 1:10 PM-2:30 PM TTH | Poliak,A. | |
Laboratory: 2:40 PM-4:00 PM T | |||||
DSCI B210-001 | Quantifying Happiness: Efforts to study and alter happiness | Semester / 1 | LEC: 2:40 PM-4:00 PM TTH | Schulz,M. | |
DSCI B215-001 | Power, Pluralism, and Parity: Intersectional Data Feminism | Semester / 1 | LEC: 1:10 PM-2:30 PM MW | Pivirotto,A. | |
DSCI B310-001 | Data in Action: Non-Profits and Data | Semester / 1 | Lecture: 1:10 PM-4:00 PM F | Spohrer,J. | |
DSCI B315-001 | Bayesian and Frequentist Statistical Inference | Semester / 1 | LEC: 1:10 PM-2:30 PM TTH | Kuelz,A. | |
ECON B253-001 | Introduction to Econometrics | Semester / 1 | Lecture: 2:40 PM-4:00 PM TTH | Monge,D. | |
ECON B304-001 | Econometrics | Semester / 1 | Lecture: 10:10 AM-11:30 AM MW | Dalton Hall 2 |
Kim,M. |
GEOL B104-001 | The Science of Climate Change | Semester / 1 | Lecture: 8:40 AM-10:00 AM TTH | Hearth,S. | |
MATH B104-001 | Basic Probability and Statistics | Semester / 1 | Lecture: 2:40 PM-4:00 PM MW | Park 300 |
Sudparid,D. |
MATH B208-001 | Introduction to Modeling and Simulation | Semester / 1 | Lecture: 1:10 PM-2:30 PM TTH | Park 245 |
Graham,E. |
PSYC B205-001 | Research Methods and Statistics | Semester / 1 | Lecture: 10:10 AM-11:30 AM TTH | Shin,Y. | |
PSYC B205-00A | Research Methods and Statistics | Semester / 1 | Laboratory: 4:10 PM-5:30 PM TH | Shin,Y. | |
PSYC B205-00B | Research Methods and Statistics | Semester / 1 | Laboratory: 8:40 AM-10:00 AM F | Shin,Y. | |
PSYC B205-00Z | Research Methods and Statistics | 1 | Shin,Y. | ||
PSYC B330-001 | Reproducible Research in Psychology | Semester / 1 | LEC: 1:10 PM-4:00 PM TH | Albert,D. | |
SOCL B327-001 | Capital & Connections:A Network Approach to Social Structure | Semester / 1 | LEC: 11:40 AM-1:00 PM MW | Cox,A. |
Fall 2025 DSCI
(Class schedules for this semester will be posted at a later date.)
Additional Fall 2023 Courses from Haverford
Music H255 (at Haverford) |
Encoding Music: Digital Approaches to Scores and Sounds |
2:30-4 PM MW + Lab |
Freedman, Richard
|
CMSC H265 | Critical Study of Data and Algorithms | MW 2:30-3:55 pm | Minocher, Xerxes |
2024-25 Catalog Data: DSCI
BIOL B215 Biostatistics with R
Fall 2024
An introductory course in statistical analysis focusing on biological data. This course is structured to develop students' understanding of statistics and probability and when to apply different quantitative methods. The lab component focuses on how to implement those methods using the R statistics environment. Topics include summary statistics, distributions, randomization, replication, and probability. The course is geared around problem sets, lab reports, and interactive learning. No prior experience with programming is required. Suggested Preparation: BIOL B110 or B111 is highly recommended. Students who have taken PSYC B205/H200 or SOCL B265 are not eligible to take this course.
Quantitative Methods (QM)
Quantitative Readiness Required (QR)
Scientific Investigation (SI)
Counts Toward: Biochemistry & Molecular Bio; Biochemistry Molecular Biology; Biochemistry Molecular Biology; Data Science; Health Studies; Health Studies.
BIOL B216 Genomics
Not offered 2024-25
An introduction to the study of genomes and genomic data. This course will examine the history of this exciting field, the types of biological questions that can be answered using large biological data sets and complete genome sequences as well as the techniques and technologies that make such studies possible. Topics include genome organization and evolution, comparative genomics, and analysis of transcriptomes, with a focus on animal genomics and humans in particular. Prerequisite: One semester of BIOL 110. BIOL 201 highly recommended.
Writing Attentive
Quantitative Methods (QM)
Scientific Investigation (SI)
Counts Toward: Biochemistry & Molecular Bio; Biochemistry Molecular Biology; Biochemistry Molecular Biology; Data Science; Health Studies; Health Studies.
BIOL B250 Computational Methods in the Sciences
Fall 2024
A study of how and why modern computation methods are used in scientific inquiry. Students will learn basic principles of analyzing, modeling, and visualizing scientific data through hands-on programming exercises. Content will draw on examples from across the life sciences. This course will use the Python programming language. No prior programming experience is required. Six hours of combined lecture/lab per week.
Quantitative Methods (QM)
Quantitative Readiness Required (QR)
Scientific Investigation (SI)
Counts Toward: Data Science; Geology.
BIOL B330 Ecological Modeling
Spring 2025
Unraveling the complexity of ecological systems calls for increasingly sophisticated quantitative approaches. Statistical models and simulations built on empirical data offer the means of exploring complex ecological questions to better understand ecological processes and inform environmental decisions. This class will introduce students to a variety of ecological models while instilling an appreciation for the strengths and limitations of each modeling technique, vital to characterizing inferences made from them. The course will be taught as a hands-on integrated lab/lecture, and students will be expected to program regularly, primarily in R. Prerequisite: BIOL B215 or BIOL B250.
Quantitative Readiness Required (QR)
Counts Toward: Computational Methods; Data Science.
CITY B201 Introduction to GIS for Social and Environmental Analysis
Fall 2024, Spring 2025
This course is designed to introduce the foundations of GIS with emphasis on applications for social and environmental analysis. It deals with basic principles of GIS and its use in spatial analysis and information management. Ultimately, students will design and carry out research projects on topics of their own choosing. Prerequisite: At least sophomore standing and Quantitative Readiness are required (i.e.the quantitative readiness assessment or Quan B001).
Quantitative Readiness Required (QR)
Counts Toward: Classical & Near Eastern Arch; Data Science; Environmental Studies; Environmental Studies.
CITY B217 Topics in Research Methods
Section 001 (Fall 2023): Research Mthds/Social Sciences
Section 001 (Spring 2025): Quantitative Methods
Spring 2025
This is a topics course. Course content varies.
Current topic description: This course is a hands-on introduction to the research process. It will provide students with the practical skills needed to design, conduct, and analyze original research of the complexity of a thesis-length project. Specifically, students will build knowledge and experience in research design (how to craft a good research question and match methods to the question), quantitative research methods (analysis of pre-existing large-n survey data), and data analysis (basic descriptive and inferential statistical analysis using Excel and SPSS). Students will also get an introduction to qualitative research methods and how they compare to quantitative methods. No computer programming is required or taught.
Quantitative Methods (QM)
Counts Toward: Data Science.
CITY B328 Topics in Advanced GIS
Section 001 (Spring 2025): Advanced GIS for Social and Environmental Analysis
Spring 2025
An advanced course for students with prior GIS experience involving individual projects and collaboration with faculty. Completion of GIS (City 201)
Quantitative Readiness Required (QR)
Counts Toward: Data Science.
CMSC B109 Introduction to Computing
Not offered 2024-25
The course is an introduction to computing: how we can describe and solve problems using a computer. Students will learn how to write algorithms, manipulate data, and design programs to make computers useful tools as well as mediums of creativity. Contemporary, diverse examples of computing in a modern context will be used, with particular focus on graphics and visual media. The Processing/Java programming language will be used in lectures, class examples and weekly programming projects, where students will learn and master fundamental computer programming principles. Students are required to register for the weekly lab. Prerequisites: Must pass either the Quantitative Readiness Assessment or the Quantitative Seminar (QUAN B001).
Quantitative Methods (QM)
Quantitative Readiness Required (QR)
Scientific Investigation (SI)
Counts Toward: Biochemistry & Molecular Bio; Biochemistry Molecular Biology; Data Science.
CMSC B113 Computer Science I
Fall 2024, Spring 2025
This is an introduction to the discipline of computer science, suitable for those students with a mature quantitative ability. This fast-paced course covers the basics of computer programming, with an emphasis on program design, problem decomposition, and object-oriented programming in Java. Graduates of this course will be able to write small computer programs independently; examples include data processing for a data-based science course, small games, or estimating likelihood of probabilistic events, etc.. No computer programming experience is necessary or expected. Students are required to register for a weekly lab.
Course does not meet an Approach
Quantitative Methods (QM)
Quantitative Readiness Required (QR)
Counts Toward: Data Science.
CMSC B151 Introduction to Data Structures
Fall 2024, Spring 2025
Introduction to the fundamental algorithms and data structures using Java. Topics include: Object-Oriented programming, program design, fundamental data structures and complexity analysis. In particular, searching, sorting, the design and implementation of linked lists, stacks, queues, trees and hash maps and all corresponding complexity analysis. In addition, students will also become familiar with Java's built-in data structures and how to use them, and acquire competency using a debugger. Students must also register for the weekly lab. Prerequisites: CMSC B109 or CMSC B113 or CMSC H105, or permission of instructor.
Quantitative Methods (QM)
Scientific Investigation (SI)
Counts Toward: Biochemistry & Molecular Bio; Biochemistry Molecular Biology; Data Science.
DSCI B100 Introduction to Data Science
Fall 2024, Spring 2025
"Data science" is a catch-all term used to describe the practice of working with and analyzing messy data sources to draw meaningful conclusions. This course provides a broad introduction to the field of data science via the statistical programming language.Over the semester, students will learn how to manipulate, manage, summarize and visualize large data sets. No previous exposure to programming or statistics is expected.
Course does not meet an Approach
Quantitative Readiness Required (QR)
Counts Toward: Data Science; Neuroscience.
DSCI B201 Data Ethics: Surveillance and Manipulation
Fall 2024
Data ethics has become an increasingly important topic with the rise of big data and artificial intelligence. We are now tracked online and off, and our data is packaged and sold to the highest bidder. In this course we will ask: Why is privacy valuable, and how might it be protected in the age of big data? What is surveillance capitalism, and what is new about it? Are we being manipulated by algorithms that know too much about us? If so, what is the ethical harm of manipulation? Course materials will be drawn from diverse sources, and assignments will apply ethical theories to current problems. Students who took PHIL-B258: Data Ethics in Social Media in Spring 2024 should contact the instructor for permission to take this course.
Course does not meet an Approach
Counts Toward: Data Science.
DSCI B210 Quantifying Happiness: Efforts to study and alter happiness
Spring 2025
This course is designed to introduce students to the scientific study of happiness and psychological well-being. We begin with readings that will allow us to critically consider what is meant by happiness and well-being and then move on to evaluating approaches to measuring these constructs. We will examine studies that have tracked happiness and attempted to identify contributors to happiness. We will also look at efforts to increase happiness. We will ponder the ways in which culture and historical factors influence the study of happiness. Students will work directly with data sets measuring aspects of happiness. Part of the class meeting time will be used to support study work with data. Prerequisite: Intro to Data Science or a statistics class; coursework in the social sciences recommended but not required; Quantitative Readiness Required (QR)
Course does not meet an Approach
Counts Toward: Data Science.
DSCI B215 Power, Pluralism, and Parity: Intersectional Data Feminism
Spring 2025
Data is often perceived as objective and impartial, but the processes of data collection, analysis, and visualization are deeply influenced by existing power structures. In this course, we will explore the intersection of data and these power structures through the lens of feminist theory. Examining the intersection of data with gender, race, class, and disability, we will question how data can both reinforce and challenge systems of oppression. Readings and discussions will center the experiences of the affected communities as we explore methods to make data practices more inclusive and equitable. Through the combination of readings, class discussions, and hands-on activities, students will engage with key concepts in data feminism. We will apply these concepts to real-world examples, using Python for data analysis. No prior programming experience is required, as the course will provide the necessary foundational skills. By the end of the course, students will be equipped to critically analyze data practices and contribute to more just and ethical data-driven decision-making.
Power, Inequity, and Justice (PIJ)
Counts Toward: Data Science.
DSCI B310 Data in Action: Non-Profits and Data
Spring 2025
Non-profits experience similar pushes and pulls toward data-driven decision making as for-profit companies do. Funding organizations and donors expect quantitative analyses of program impact and success. The digital tools that organizations use to organize clients, volunteers and donors produce data that might be analyzed. However, overshadowing both trends is a very long history of public-sphere data collection and data-driven policy-making that disenfranchised and objectified the very communities that public and charitable institutions were ostensibly helping. What might it take to reconcile data collection and data-driven decision-making with more inclusive understandings of social justice? In this course you will work and learn with staff from local non-profit organizations as they develop practices for working and making decisions with data that align with their organizational values and goals. Prerequisite: At least two courses that count towards the data science minor
Counts Toward: Data Science.
DSCI B314 Advanced Data Science:Regression & Multivariate Statistics
Fall 2024
This course is designed to improve your data science skills by introducing you to advanced statistical techniques that have become increasingly important in psychology and a variety of fields. The focus will be on understanding the advantages and limitations of regression approaches and multivariate analytic techniques that permit simultaneous prediction of multiple outcomes. Topics covered will include basic regression approaches, advanced regression strategies, structural equation modeling, factor analysis, measurement models, path modeling, modeling of longitudinal data sets, multilevel modeling approaches and growth curve modeling. Students will gain familiarity with these techniques by working with actual data sets. The last part of each class will be reserved for lab time to apply lessons from class to an assignment due the following week. Students are welcome to stay beyond the noon ending time to complete the assignment. Prerequisites: Required: PSYC Research Methods and Statistics 205 (BMC), Psych 200 (HC) Experimental Methods and Statistics, or BIOL B215 Experimental Design and Statistics. Students with good statistical preparation in math or other disciplines and some knowledge of core methods used in social science or health-related research should consult with the instructor to gain permission to take the class.This course was formerly numbered PSYC B314; students who previously completed PSYC B314 may not repeat this course.
Counts Toward: Data Science; Health Studies; Psychology.
DSCI B315 Bayesian and Frequentist Statistical Inference
Spring 2025
What are the different ways in which we can derive conclusions (and certainty of those conclusions) from the same sample of data? This course provides an introduction to the logic and application of statistical methods for analyzing data relevant to fields in data science utilizing two popular perspectives: the traditional Null Hypothesis Significance Testing (NHST) or Frequentist approach as well as the more contemporary approach of Bayesian inference. In doing so, we will tackle two of the most predominate ways of drawing conclusions about the world and gain important insight into quantifying uncertainty in our conclusions. Topics covered include data management and screening; methods for describing and presenting data; t-tests; analysis of variance; advanced applications of the general linear model (i.e., regression) including moderator analyses; and generalized versions of the general linear model such as logistic regression. Some of these topics may be seen as a review from the NHST perspective; however we will jump straight into modeling these parameters using the more flexible general linear model. This is an applied course in statistics. Thus, the emphasis is not on learning math (i.e., doing statistical analyses by hand). Rather, the major objectives of this course are for you to gain a conceptual understanding of statistical inference from both Bayesian and NHST perspectives, learn how to implement statistical analyses using both approaches on a computer using R (a free, open-source program), interpret R output, and communicate the results of statistical analyses in clear and compelling language. No prior knowledge of the R statistical platform is required. Prerequisites: BIOL 215 Biostatistics with R, or PSYC 205 Research Methods and Statistics, or SOCL 265 Quantitative Methods or A comparable statistics course in the BICO (e.g., PSYC H200).
Course does not meet an Approach
Counts Toward: Data Science.
ECON B253 Introduction to Econometrics
Fall 2024, Spring 2025
An introduction to econometric terminology and reasoning. Topics include descriptive statistics, probability, and statistical inference. Particular emphasis is placed on regression analysis and on the use of data to address economic issues. The required computational techniques are developed as part of the course. Class cannot be taken if you have taken H203 or H204. Prerequisites: ECON B105 and a 200-level elective. ECON H201 does not count as an elective.
Quantitative Methods (QM)
Counts Toward: Data Science; Growth and Structure of Cities.
ECON B304 Econometrics
Spring 2025
The econometric theory presented in ECON 253 is further developed and its most important empirical applications are considered. Each student does an empirical research project using multiple regression and other statistical techniques. Prerequisites:ECON B253 or ECON H203 or ECON H204 and ECON B200 or ECON B202 and MATH B201 or permission of instructor.
Counts Toward: Data Science; Mathematics.
GEOL B104 The Science of Climate Change
Spring 2025
A survey of the science behind climate change. Students will analyze climate data, read primary scientific literature, examine the drivers of climate change, and investigate the fundamental Earth processes that are affected. We will also examine deep-time climate change and the geologic proxies that Earth scientists use to understand climate change on many different time scales. This course is appropriate for students with little to no scientific background but is geared toward students who are considering a science major. Two 90-minute lectures per week.
Quantitative Methods (QM)
Quantitative Readiness Required (QR)
Scientific Investigation (SI)
Counts Toward: Data Science; Environmental Studies.
GEOL B210 Cataloging Collections
Not offered 2024-25
This course is an introduction to cataloguing as an integral component of museum collections management. Students will consider the history, theories, and practices of cataloguing as a museum practice as it relates to the different objectives of various types of museums (art, natural history, science, history, zoological). Students will explore how cultural attitudes, institutional policies, and social expectations have historically influenced, and continue to shape, the development of collections management policies and procedures, while undertaking projects related to collections research and cataloguing. They will evaluate and recommend standardized vocabularies to build a collections database that accommodates more complex histories while optimizing searchability. They will engage with instructors who are actively involved in the professional operations of and calls to "decolonize" collections, becoming trained in the fundamentals of cataloguing collections as they actively rethink these structures and contribute to object records.
HLTH B302 Survey Methods for Health Research
Not offered 2024-25
Surveys are widely used to measure the population prevalence of various health conditions; to better understand the scope and impact of exposure to social and economic stressors on population health; to monitor health-related knowledge, attitudes and practices; and to inform health systems strengthening efforts. Through course material and hands-on experience, students will master the basic elements of survey design, including, operationalizing constructs and formulating research questions, choosing a mode of survey implementation, pretesting the survey instrument, designing a sampling plan, managing field operations, and analyzing and interpreting survey data. Prerequisites: Completion of a 200-level course in the social sciences or permission of the instructor.
MATH B104 Basic Probability and Statistics
Fall 2024, Spring 2025
This course introduces key concepts in descriptive and inferential statistics. Topics include summary statistics, graphical displays, correlation, regression, probability, the Law of Large Numbers, expected value, standard error, the Central Limit Theorem, hypothesis testing, sampling procedures, bias, and the use of statistical software.
Quantitative Methods (QM)
Quantitative Readiness Required (QR)
Counts Toward: Data Science; Neuroscience.
MATH B195 Select Topics in Mathematics
Not offered 2024-25
This is a topics course. Course content varies.
MATH B205 Theory of Probability with Applications
Not offered 2024-25
The course analyzes repeatable experiments in which short-term outcomes are uncertain, but long-run behavior is predictable. Topics include: random variables, discrete distributions, continuous densities, conditional probability, expected value, variance, the Law of Large Numbers, and the Central Limit Theorem. Prerequisite: Math 201.
MATH B208 Introduction to Modeling and Simulation
Spring 2025
Mathematical models are constructed to describe the complex world within and around us. Computational methods are employed to visualize and solve these models. In this course, we focus on developing mathematical models to describe real-world phenomena, while using computer simulations to examine prescribed and/or random behavior of various systems. The course includes an introduction to programming (in R or Matlab/Octave), and mathematical topics may include discrete dynamical systems, model fitting using least squares, elementary stochastic processes, and linear models (regression, optimization, linear programming). Applications to economics, biology, chemistry, and physics will be explored. Prior programming experience not required. Prerequisite: MATH B102 or the equivalent (merit score on the AP Calculus BC Exam or placement).
Course does not meet an Approach
Quantitative Methods (QM)
Quantitative Readiness Required (QR)
Counts Toward: Data Science.
PHIL B258 Data Ethics in Social Media
Not offered 2024-25
From sharing our life experiences to reading the news, social media permeates our daily lives. It affects how we communicate, what we buy, and who we vote for. It also generates an immense amount of data, which is eagerly collected by individuals, corporations, and governments. In this course we will investigate some of the threats (and promises) of this data. We will ask questions like: What is the value of privacy online, and how might it be protected? Are we being manipulated by algorithms? Are the algorithms that generate and moderate content biased? What are some of the ways online data can be used for good? Students will investigate these questions through practical and theoretical approaches. Course materials will be drawn from diverse sources including philosophy, data science, sociology, legal theory, and the Internet. Visiting speakers will enrich our discussion by offering academic and professional perspectives on the uses and misuses of data.
Critical Interpretation (CI)
Counts Toward: Data Science.
POLS B233 Intro to Research Design and Data Analysis for PoliSci
Fall 2024
This course offers students an introduction to the research design and methods used in political science. Topics are as follows (but are not limited to): (1) Positivism vs. interpretivism, (2) Causal vs. descriptive inference (3) Conceptualization, operationalization and measurement, (4) Experimental design, (5) Quasi-experimental design, (6) Survey research and sampling, (7) In-depth interviewing, (8) Quantitative data analysis and statistics, (9) Case selection, and (10) Multi-method research design. Students will have problem sets to finish every two weeks for which they will use the necessary software (usually R and R Studio). At the end of the semester, they will submit a research design which they can use as a basis for their senior thesis.
Quantitative Methods (QM)
Counts Toward: Data Science.
POLS B345 Big Data, Big Impact, Big Responsibilities: Fundamentals and Ethics of Data Science
Fall 2024
The era of "big data" has dramatically altered the way people tackle political, social, and economic issues to analyze and generate solutions, as well as the way they conduct social science research. Data is powerful and beautiful, yet deceitful. As such, big data can create many impactful solutions across the world while carrying big risks that require bigger responsibilities. This course aims to help students also nurture an informed mindset of how to use data properly and to what end - from ethical, legal, and public policy perspectives. Prerequisite: One course in Data Science AND one course in Social Sciences or International Studies.
Course does not meet an Approach
Counts Toward: Data Science.
PSYC B205 Research Methods and Statistics
Fall 2024, Spring 2025
An introduction to research design, general research methodology, and the analysis and interpretation of data. Emphasis will be placed on issues involved with conducting psychological research. Topics include descriptive and inferential statistics, research design and validity, analysis of variance, and correlation and regression. Each statistical method will also be executed using computers. Lecture three hours, laboratory 90 minutes a week.
Quantitative Methods (QM)
Scientific Investigation (SI)
Counts Toward: Data Science; Neuroscience.
PSYC B265 Computational Neuroscience
Fall 2024
This course introduces students to the field of computational neuroscience. Computational neuroscience uses mathematical models to understand the information carried in the brain at many scales: a single neuron, synaptic connections between neurons, and populations of neurons. Mathematical models help us gain a precise understanding of the dynamics of our nervous system and make better predictions by running simulations of the system. In this course, students will learn key concepts and topics in computational neuroscience. Topics include neural encoding and decoding, artificial neural networks, reinforcement learning, and Bayesian probability theories. They will gain hands-on experience formulating the mental processes in the brain in terms of mathematical equations and writing computer codes in programming languages such as Python and MATLAB to simulate these processes. Prerequisites: Introductory Psychology (PSYC B101 or PSYC H100), or Introduction to Neuroscience (NEUR H100).
Scientific Investigation (SI)
Counts Toward: Data Science; Neuroscience.
PSYC B318 Data Science with R
Fall 2024
In this course, students will build and practice data science skills to tidy up disorganized real-world data sets, generate eye-catching visualizations, and craft easy-to-interpret, polished end-products in the R programming environment. Topics include experimental design, building statistical models, and visualizing uncertainty. Students will work throughout the term on an independent data science project leveraging real-world data to investigate their hypotheses culminating in a data blitz presentation. Students will learn how to respond to coding challenges with a puzzle-solving, growth-oriented mindset. No prior R experience is not required. Prerequsites: Required PSYC B205 (÷ÈÓ°Ö±²¥ - Research Methods and Statistics), OR PSYC H200 (Haverford - Research Methods and Statistics), OR SOCLB265 (÷ÈÓ°Ö±²¥ - Quantitative Methods).
Quantitative Readiness Required (QR)
Counts Toward: Data Science; Neuroscience.
PSYC B330 Reproducible Research in Psychology
Spring 2025
How do we know what we know and what we don't know in empirical science? Can we trust the peer review process to filter out invalid claims and identify the claims with enough evidentiary support to merit inclusion in The Literature? This course has two primary aims. The first is to introduce students to the recent history and major conclusions of the "Open Science" reform movement in psychology and related sciences. Students will learn about the structural and methodological factors that are potentially responsible for the high proportion of false positive findings in psychology. The second aim is to introduce modern best practices in research design and statistical computing, which prioritize error control, transparency, and reproducibility. The course will provide a very gentle introduction to the R programming language, which students will use to produce a simple but fully reproducible statistical analysis in the format of a scientific report. Prerequisites: PSYC B205 or PSYC H200 or similar introduction to Research Methods and Statistics.
Quantitative Readiness Required (QR)
Counts Toward: Data Science.
SOCL B265 Quantitative Methods
Fall 2024
An introduction to the conduct of empirical, especially quantitative, social science inquiry. In consultation with the instructor, students may select research problems to which they apply the research procedures and statistical techniques introduced during the course. Using SPSS, a statistical computer package, students learn techniques such as cross-tabular analysis, ANOVA, and multiple regression. Required of ÷ÈÓ°Ö±²¥ Sociology majors and minors. Non-sociology majors and minors with permission of instructor.
Quantitative Methods (QM)
Quantitative Readiness Required (QR)
Counts Toward: Data Science; Health Studies.
SOCL B327 Capital & Connections:A Network Approach to Social Structure
Spring 2025
Is it better to have a tightly knit circle of friends or several compartmentalized groups? And better for what--social support, academic achievement, finding a job, coming up with a new idea, sparking a social movement? How might we study questions like these? In this course, we will explore the various ways of understanding social connections as a resource--as a form of capital--and we will learn how to collect and analyze data about networks to investigate the structure of social networks. In particular, we will learn how to think about advantages and disadvantages as resulting from the structure and composition of our social networks. Prerequisite: At least one social science course or permission of instructor.
Course does not meet an Approach
Counts Toward: Data Science.
Contact Us
Data Science
Marc Schulz
Professor of Psychology on the Sue Kardas Ph.D. 1971 Professorship and Director of Data Science
mschulz@brynmawr.edu
610-526-5039
Nina Fichera
Administrative Support Staff
nfichera@brynmawr.edu